Photodissociation of organic molecules in star-forming regions II: Acetic acid
نویسندگان
چکیده
Fragments from organic molecule dissociation (such as reactive ions and radicals) can form interstellar complex molecules like amino acids. The goal of this work is to experimentally study photoionization and photodissociation processes of acetic acid (CH3COOH), a glycine (NH2CH2COOH) precursor molecule, by soft X-ray photons. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator (TGM) beamline (100 310 eV). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, that only 4-6% of CH3COOH survive the strong ionization field. CH3CO, COOH and CH+3 ions are the main fragments, and the presence of the former may indicate that the production-destruction process of acetic acid in hot molecular cores (HMCs) could decrease the H2O abundance since the net result of this process converts H2O into OH + H. The COOH ion plays an important role in ion-molecule reactions to form large biomolecules like glycine.
منابع مشابه
Photodissociation of organic molecules in star-forming regions
The presence of methyl alcohol or methanol (CH3OH) in several astrophysical environments has been characterized by its high abundance that depends on both the production rate and the destruction rate. In the present work, the photoionization and photodissociation processes of methanol have been experimentally studied, employing soft X-ray photons (100-310 eV) from a toroidal grating monochromat...
متن کاملComplex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model
Gas-phase processes were long thought to be the key formation mechanisms for complex organic molecules in star-forming regions. However, recent experimental and theoretical evidence has cast doubt on the efficiency of such processes. Grain-surface chemistry is frequently invoked as a solution, but until now there have been no quantitative models taking into account both the high degree of chemi...
متن کاملDestruction of formic acid by soft X-rays in star-forming regions
Formic acid is much more abundant in the solid state, both in interstellar ices and cometary ices, than in the interstellar gas (ice/gas ∼ 104) and this point remains a puzzle. The goal of this work is to experimentally study ionization and photodissociation processes of HCOOH (formic acid), a glycine precursor molecule. The measurements were taken at the Brazilian Synchrotron Light Laboratory ...
متن کاملPhotodissociation of acetic acid in the gas phase: an ab initio study.
Photodissociation of acetic acid in the gas phase was investigated using ab initio molecular orbital methods. The stationary structures on the ground-state potential energy surfaces were mainly optimized at the MP2 level of theory, while those on the excited-state surfaces were determined by complete active space SCF calculations with a correlation-consistent basis set of cc-pVDZ. The reaction ...
متن کاملA Survey of Large Molecules of Biological Interest toward Selected High-mass Star-forming Regions
We have surveyed the high-mass Galactic star-forming regions G19.61 0.23, G45.47+0.05, and W75N for interstellar methanol (CH3OH), formic acid (HCOOH), acetic acid (CH3COOH), methyl formate (HCOOCH3), methyl cyanide (CH3CN), and ethyl cyanide (CH3CH2CN) with the Berkeley-Illinois-Maryland Association Array. From our observations, we have detected two new sources of interstellar HCOOH toward the...
متن کامل